

AFRL-RI-RS-TR-2008-279
In-House Technical Report
October 2008

DISTRIBUTED EPISODIC EXPLORATORY
PLANNING (DEEP)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2008-279 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

JOSEPH A. CAROZZONI JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCT 08
2. REPORT TYPE

Interim
3. DATES COVERED (From - To)

July 06 – June 08
4. TITLE AND SUBTITLE

 DISTRIBUTED EPISODIC EXPLORATORY PLANNING (DEEP)

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Joseph A. Carozzoni, James H. Lawton, Chad DeStefano, Anthony J. Ford,
Jeffrey W. Hudack, Kurt K. Lachevet, and Gennady R. Staskevich

5d. PROJECT NUMBER
558S

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
DP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory/Information Directorate
Rome Site/RISB
525 Brooks Rd.
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory/Information Directorate
Rome Site
26 Electronic Parkway
 Rome, NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-279

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.PA# 08-0584

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes an overview and the progress to date of the Distributed Episodic Exploratory Planning (DEEP) project. DEEP
is a mixed-initiative decision support system that utilizes past experiences to suggest courses of action for new situations. It has been
designed as a distributed multi-agent system, using agents to maintain and exploit the experiences of individual commanders as well
as to transform suggested past plans into potential solutions for new problems. The system is mixed-initiative in the sense that a
commander, through his or her agent, can view and modify the contents of the shared repository as needed. The agents interact
through a common knowledge repository, represented by a blackboard in the initial architecture. The blackboard architecture is well
suited for dealing with ill-defined, complex situations such as warfare.

15. SUBJECT TERMS
Distributed Command and Control, Analogical Reasoning, Network Centric Planning, Intelligent Agents

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

44

19a. NAME OF RESPONSIBLE PERSON
 Joseph A. Carozzoni

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
 N/A

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Abstract

This report describes an overview and the progress to date of the Distributed Episodic
Exploratory Planning (DEEP) project. DEEP is a mixed-initiative decision support
system that utilizes past experiences to suggest courses of action for new situations. It has
been designed as a distributed multi-agent system, using agents to maintain and exploit
the experiences of individual commanders as well as to transform suggested past plans
into potential solutions for new problems. The system is mixed-initiative in the sense that
a commander, through his or her agent, can view and modify the contents of the shared
repository as needed. The agents interact through a common knowledge repository,
represented by a blackboard in the initial architecture. The blackboard architecture is well
suited for dealing with ill-defined, complex situations such as warfare.

i

Contents

1 Executive Summary .. 1
2 Introduction ... 2

2.1 Problem Statement .. 2
2.2 DEEP Project Objective .. 3

3 Methods, Assumptions, and Procedures ... 5
3.1 DEEP Architecture Overview ... 5
3.2 Systems Interaction ... 7

3.2.1 Plan Representation .. 7
3.2.2 System Messaging .. 8

3.3 Architecture ... 10
3.3.1 Blackboard – The Distributed Shared Knowledge Structure 11
3.3.2 DEEP Agents .. 14
3.3.3 Interface Agents .. 15
3.3.4 Critic Agents ... 16
3.3.5 Plan Execution .. 19

4 Results and Discussion ... 20
4.1 Research Platform Demonstration .. 20
4.2 Semantic CPR ... 21

4.2.1 URI Reference .. 23
4.2.2 RDF Metadata Model ... 23
4.2.3 Semantic Technology Benefits and Challenges .. 25

4.3 Multi-Case Reconciliation .. 27
4.3.1 Coherence ... 28
4.3.2 Critical Rationalism .. 29
4.3.3 Planning in DECK .. 30

4.4 Distributed Database Management System .. 31
4.5 Formalized Messaging Structure .. 32
4.6 Plan Execution Simulation Options .. 32

5 Conclusions ... 34
6 Bibliography ... 36
7 Symbols, Abbreviations and Acronyms ... 38

ii

List of Figures

Figure 1 - DEEP Architecture ... 6
Figure 2 - Core Plan Representation ... 7
Figure 3 - DEEP-CPR ... 10
Figure 4 - Distributed Blackboard Architecture ... 12
Figure 5 - Case-based Planning .. 15
Figure 6 - DEEP Demonstration Prototype .. 20
Figure 7 – Resource and Role Taxonomies .. 22
Figure 8 - RDF Example ... 22
Figure 9 – Objective Decomposition .. 24
Figure 10 - Distributed Blackboard Architecture using DDBMS 31

iii

 1

1 Executive Summary

This report describes an overview and the progress to date of the Distributed Episodic
Exploratory Planning (DEEP) project. DEEP is a mixed-initiative decision support
system that utilizes past experiences to suggest courses of action for new situations. It has
been designed as a distributed multi-agent system, using agents to maintain and exploit
the experiences of individual commanders as well as to transform suggested past plans
into potential solutions for new problems. The system is mixed-initiative in the sense that
a commander, through his or her agent, can view and modify the contents of the shared
repository as needed. The agents interact through a common knowledge repository,
represented by a blackboard in the initial architecture. The blackboard architecture is well
suited for dealing with ill-defined, complex situations such as warfare.

The DEEP project was initiated in response to the need to support the key tenets of
Network Centric Operations (NCO), namely information sharing, shared situational
awareness, and knowledge of commander’s intent. To that end, the project’s long-term
goal is to develop, in-house, a prototype system for distributed, mixed-initiative planning
that improves decision-making by applying analogical reasoning over an experience base.

The core of this report documents the successful completion of the project’s short-term
objective: the development of a “research platform” to further support more aggressive
research in the areas of distributed Command and Control (C2) and analogical reasoning,
and how to apply the technology to advance the state of C2. This research platform
implements DEEP’s high-level system-of-systems architecture comprised of the
following systems:

• Distributed Blackboard for multi-agent, non-deterministic, opportunistic
reasoning

• Case-Based Reasoning to capture experiences (successes and/or failures)
• Episodic Memory for powerful analogical reasoning
• Multi-Agent System for mixed initiative planning
• ARPI Core Plan Representation for human-to-machine common dialog
• Constructive Simulation for exploration of possible future states

Our research platform implementation will serve the DEEP project both as a concept
demonstration of how experience-based, distributed mixed-initiative planning can be
accomplished in a network-centric environment, as well as an environment for
conducting research on the individual systems needed to support this NCO vision. This
platform enables research in the areas of semantic extensions to CPR, our plan
representation; the use of robust coherence to utilize the experiences from several agents
to solve a problem; the leveraging of distributed database technology to provide
persistent storage for plans and planning information; a speech-act-based messaging
formalism for consistent communications among the distributed system; and the use of
advanced simulation platforms to improve the fidelity of plan execution and analysis.

 2

2 Introduction

DEEP is a mixed-initiative decision support system that utilizes past experiences to
suggest courses of action for new situations. It has been designed as a distributed multi-
agent system, using agents to maintain and exploit the experiences of individual
commanders as well as to transform suggested past plans into potential solutions for new
problems. The system is mixed-initiative in the sense that a commander, through his or
her agent, can view and modify the contents of the shared repository as needed. The
agents interact through a common knowledge repository, represented by a blackboard in
the initial architecture. The blackboard architecture is well suited for dealing with ill-
defined, complex situations such as warfare.

2.1 Problem Statement

The U.S. and other highly industrialized nations have developed military capabilities that
excel in conventional force-on-force warfare, especially where tactics are well developed
and known. However, modern adversaries have devised the strategy of not going “head-
to-head” with these capabilities and instead combat modern conventional forces with
unconventional tactics. One example of the result of a weapon system being vastly
superior is the case of the air superiority fighter which modern adversaries totally avoid
putting themselves in a position to contest them.

To meet these future challenges, U.S. forces are in the midst of a “transformation” to not
only support traditional high-tempo, large force-on-force engagements, but also smaller-
scale conflicts characterized by insurgency tactics and time-sensitive targets of
opportunity. This transformation requires a vastly new C2 process that can adapt to any
level of conflict, provides a full-spectrum joint warfighting capability, and can rapidly
handle any level of complexity and uncertainty.

To meet future challenges, the United States. Air Force (USAF) is moving towards a
model of continuous air operations not bounded by the traditional 24-hour Air Tasking
Order (ATO) cycle. Meeting these objectives will require a highly synchronized,
distributed planning and replanning capability. As a potential way ahead, AF/A5 (Plans)
released in May 2006 a revolutionary vision paper titled “C2 Enabling Concepts” (Braun,
2006)depicting what a potential future C2 environment could be. Four key concepts
emerged as being critical to the success of a future Air Operations Center (AOC):

• Distributed/Reachback planning
 “Today’s constantly engaged AOCs no longer focus on shifting from

one relatively rare major combat operation to the next. Their challenge
is day-to-day, steady state C2 of these continual lower-end
contingencies.”

• Redundant/Backup planning

 3

 “AOCs can be geographically separated but electronically plugged into
the battlespace so that they function as if their members were
collocated.”

• Continuous planning
 “The supporting and supported AOCs will maximize use of distributed

network capabilities to ensure information is backed up and the
supporting AOC is prepared to assume operations should the engaged
AOC encounter a catastrophic event that makes operations
unsupportable.”

• Flexible, scalable, tailorable C2
 “..rapidly adapt to the level of conflict by connecting with worldwide

capabilities, including joint and coalition forces.”

Experience with recent operations also reveals that the C2 process must transition from a
process of observation and reaction to one of prediction and preemption. To achieve this,
we will need to go beyond the focus of military operations, and instead address the entire
spectrum of Political, Military, Economics, Social, Infrastructure, and Information
(PMESII) (Alberts & Hayes, 2007).

To that end, the focus of the research reported here is on developing a C2 environment
that supports the vision of Network Centric Operations (NCO) (Alberts & Hayes, 2007).
The tenets of NCO are:

• Information sharing
• Shared situational awareness
• Knowledge of commander’s intent

2.2 DEEP Project Objective

In response to the need to support these key NCO tenets, the long-term goal of the
Distributed Episodic Exploratory Planning (DEEP) project is to develop, in-house, a
prototype system for distributed, mixed-initiative planning that improves decision-
making by applying analogical reasoning over an experience base. The two key
objectives of DEEP are:

• Provide a mixed-initiative planning environment where human expertise is
captured and developed, then adapted and provided by a machine to augment
human intuition and creativity.

• Support distributed planners in multiple cooperating command centers to
conduct distributed and collaborative planning.

 4

That is, the architecture of DEEP was explicitly designed to support the key tenets of
NCO in a true distributed manner. Because DEEP is not based on any current C2 system,
we are able to explore concepts such as combining planning and execution to support
dynamic replanning, to examine machine-mediated self-synchronization of distributed
planners, and to experiment with the impact of trust in an NCO environment (e.g., “Good
ideas are more important than their source”).

Alberts and Hayes (2007) advocate bold new approaches beyond current organizational
process, focusing on what is possible for NCO. High priority basic research topics
recommended as areas to systematically explore are:

1. Taxonomy for planning and plans;
2. Quality metrics for planning and plans;
3. Factors that influence planning quality;
4. Factors that influence plan quality;
5. Impact of planning and plan quality on operations;
6. Methods and tools for planning; and
7. Plan visualization

This report describes our approach to achieving this vision of NCO and presents the
progress to date on the development of the DEEP prototype, especially as it relates to
these priorities.

 5

3 Methods, Assumptions, and Procedures

In this chapter we present an overview of the DEEP architecture, a description of the
systems that comprise the DEEP prototype, and a discussion of how these systems
interact. In our development of this architecture, we have given careful consideration to
Alberts and Hayes (2007) priorities (Section 2.2), noting that considerable attention has
been given to the first research topic through the use of the Core Plan Representation
(CPR) as the knowledge structure tying the system together.

3.1 DEEP Architecture Overview

DEEP is a system-of-systems architecture (Figure 1), comprised of the following
systems:

• Distributed Blackboard for multi-agent, non-deterministic, opportunistic
reasoning

• Case-Based Reasoning system to capture experiences (successes and/or
failures)

• Episodic Memory for powerful analogical reasoning
• Multi-Agent System for mixed initiative planning
• ARPI Core Plan Representation for human-to-machine common dialog
• Constructive Simulation for exploration of possible future states

The DEEP architecture also includes a messaging system, various knowledge objects, a
shared data storage system, along with a number of agents, all described later in this
chapter. For convenience, we will describe the pieces in the architecture in the order in
which they might be typically used. One should bear in mind, however, that in this type
of mixed-initiative system, there will rarely be a clean path from the initial planning
problem to the final solution.

Consider the system-of-systems architecture depicted in Figure 1. The starting point for
entry into the system occurs when a commander describes a new mission using a
planning agent (1). The planning agent allows for the commander to input information
into the system which defines their current objectives. These objectives, along with other
information, such as resources, locations, and time constraints, are collectively known as
the situation. This situation is then placed on the shared blackboard (2). The blackboard
would in turn notify all registered systems of the existence of the new situation. Using the
given situation, the other planning agents, with their associated case bases and cased-
based reasoning capabilities, would each search their case base for relevant past
experiences (3). These results are then modified to fit the current situation (4) and are
posted to the blackboard as candidate plans (5). Once the candidate plans are on the
blackboard, they are adapted by specialized adaptation agents to further refine these
plans to meet the current situation (6). These plans are now ready to be critiqued by the
critic agents.

 6

Figure 1 - DEEP Architecture

Critic agents concurrently scrutinize the candidate plans and score them based on their
individual expertise (7). Once the plans are scored, the execution selection critic gathers
the adapted plans along with their scores, determines their overall scores, and selects a
number of top rated plans to be executed (8). The top rated plans are now executed
(currently in a simulated environment) (9). Once a plan completes execution, the results
are combined with the plan and assimilated back into the original planning agent’s case
base (10).

Although we have described this planning and execution as a single flow through the
system, in reality few plans will execute without changes. The DEEP architecture
supports the modification of currently executing plans through feedback of partial results
of plan execution into the blackboard. This allows the plans to be run through the
adaptation and critique processes as many times as needed.

In the remainder of this chapter we present the various systems of the DEEP architecture
mentioned in the above flow example. We begin with an explanation of the system-of-
system interaction facilities that underlie the DEEP prototype.

 7

3.2 Systems Interaction

Being a network-centric application, there is a strong emphasis in DEEP on how
knowledge is passed and how that knowledge is encapsulated. Before discussing the
major structural systems of DEEP, we present a discussion on how the systems interact
and on the knowledge objects that the systems process. The next two sections discuss the
main type of knowledge object used in DEEP and in the DEEP messaging system.

3.2.1 Plan Representation

The various DEEP systems all use a common knowledge representation to facilitate their
interactions. We know that the future of military planning is not just for the Air Force,
but rather will involve participants from various agencies (both military and civilian),
possibly planning at different levels of abstraction. Thus, DEEP was designed to

Figure 2 - Core Plan Representation

 8

support plans for joint, coalition, and civilian operations as well handle plans at different
abstraction levels (i.e., strategic, tactical, or operational). Planning for heterogeneous
operations also means that the plan representation has to be able to consider the semantics
of terms used in the plan, ensuring agreement among all participants. This is an ongoing
research topic, discussed in detail in Section4.2. Finally, because DEEP is a mixed-
initiative environment, the chosen plan representation must be easily machine-readable as
well as presentable to a user.

The ARPA-Rome Laboratory Planning Initiative (ARPI) conducted research on several
plan representations. The culmination of that effort was the Core Plan Representation
(CPR), shown in Figure 2. CPR was selected for DEEP as best meeting the above criteria.
CPR is an object-oriented structure that is agnostic to the planning abstraction level (i.e.,
strategic, tactical, or operational) (Pease A. , 1998). Its natural object oriented structure
also lines up very well with the machine reasoning capability DEEP requires. We have
adapted the original CPR structure (Figure 2) to meet the needs of DEEP as they have
evolved over time.

In DEEP, CPR is used to represent individual experiences, or cases, which are composed
of a plan, events, and one or more outcomes. The attributes of the plan are used by the
cased-based reasoning system (Section 3.3.3) to determine the similarity of past cases
with the current situation. Execution (currently through simulation) of the plan populates
the events and outcome sections. DEEP-CPR (Figure 3) was extended from the base
structure shown in Figure 2 to support a much deeper reasoning capability of plans.

3.2.2 System Messaging

CPR is the foundation for the DEEP architecture and used by all components, thus a
formalized messaging model is required for the interactions within the systems. The
systems that interact with one another include various types of agents along with the
system blackboard. To accomplish this, a formalized messaging scheme based on inter-
agent communication is required with a defined structure so that new systems are able to
understand incoming messages as well as transmit their own. The DEEP architecture
includes a formal messaging scheme to be used by the other systems.

 9

In the current DEEP architecture, the communication protocol used is the publish-
subscribe communication paradigm through the blackboard. At a high level, systems
subscribe to the blackboard and are notified when new information is added. Because of
the push to create a functional proof-of-concept architecture, a simple taxonomy is
currently in place to determine notification and message types until a more formalized
communications protocol is established. The blackboard mediates all messaging using its
defined messaging scheme and connectivity medium. To prohibit the distributed
planning aspect of DEEP deteriorating to “chat-room” type collaboration, an artificial
barrier has been placed on human-to-human direct planning. Therefore, agents of any
kind (human or software) do not communicate with each other directly, but instead use
the blackboard as a hub of communication. For example, consider the mixed initiative
scenario where a critic agent requires input from a user. To obtain this input, the critic
agent would send a message through the blackboard to the appropriate interface agent;
the reply would similarly be routed back through the blackboard.

As a more complex example, let us assume a simple setup of two planning agents (A and
B), one blackboard, one critic agent, and one simulator. All systems are registered with
the blackboard for communication. Planning Agent A becomes an engaged agent when
its user inputs a new situation through the agent’s user interface. Planning Agent A in
turn places this new problem on the blackboard.

 10

Figure 3 - DEEP-CPR

Once posted, the blackboard notifies registered systems with a message indicating the
type of object (e.g., new problem situation) by broadcasting these messages. The notified
systems have to decide if the message is relevant to them. This happens for all
communication, so in our example when Planning Agent A posts a new situation, all
registered system are notified, including critics who cannot do anything with a situation.

3.3 Architecture

We now explain the systems of the DEEP architecture that were mentioned in the
previous section. These systems are the distributed blackboard, interface agents, and
critic agents. The explanation will provide an understanding of how the pieces fit into the
mixed-initiative distributed architecture of DEEP.

 11

3.3.1 Blackboard – The Distributed Shared Knowledge Structure

As can be seen from the DEEP architecture in Figure 1, the various DEEP systems rely
on a shared knowledge structure to act as a medium of communication and interaction.
Also, in order to support the NCO vision discussed in Section 2.1, the DEEP architecture
requires a mechanism that supports reach-back in a distributed system. A blackboard
system was chosen to fulfill this need as it not only functions as a shared memory for the
DEEP system, but as we discussed in Section 3.1, it provides other functionality as well.

A blackboard system is an opportunistic artificial intelligence application based on the
blackboard architectural software engineering paradigm (Corkill, 1991).The blackboard
system functions as a central knowledge store facilitating communication and interaction
between the different software systems, including interface agents, critic agents, and
simulation engines (explained later in this chapter). These interactions are made possible
by the sharing and passing of objects.

To fully meet the requirements of the DEEP vision for distributed C2, a distributed
blackboard system was required. Current commercial and open source blackboard system
implementations are not distributed, so the paradigm needed to be extended from a
monolithic to a distributed environment. The current DEEP blackboard, shown in Figure
4, was designed and implemented following this extended view using design patterns
described in (Hughes & Hughes, 2003).

Traditionally, a blackboard consists of three discrete components: the blackboard
knowledge structure which is a central repository for knowledge objects, the knowledge
sources which are specialist software modules (agents in the DEEP software architecture)
that provide specific expertise required by the system, and a control component which
controls the flow of objects and problem-solving activity in the system (Corkill, 1991).
Each of these systems will be described in detail in the following sections.

3.3.1.1 Core Knowledge Structure

The core knowledge structure (see Figure 4) of the blackboard is the global knowledge
store labeled as “BB Data Structure” in the diagram. This knowledge structure holds the
objects within the system and is accessible by all of the system’s knowledge sources.
Because there could potentially be an extremely large number of objects placed on and
contained within the blackboard at one time, blackboard data structures are
conventionally divided in more than one way. These divisions are known as panes and
layers, and could potentially contain further dimensions of separation (Corkill, 1991).

In the DEEP architecture, the core knowledge structure is defined to provide certain
functionality. The knowledge store component of the blackboard has been abstracted out
to allow for future revisions and extensions to how and where the knowledge is stored.
This interface allows the option for the backend of the blackboard to be replaced with a
database or other high performance data store.

 12

In DEEP’s current state, the core data structure is a matrix of hash tables. These hash
tables within hash tables allow panes and layers to be identified by providing a unique
key and utilized to divide the blackboard up into more manageable sections. Now that
there is a global repository for data, software system may start to utilize it to solve
problems.

3.3.1.2 Knowledge Sources

By connecting to the blackboard, an application has the ability to become a knowledge
source of the blackboard system. Knowledge sources are independent agents that
provide specialized expertise that contributes to the solution of a problem. Figure 4 shows
example knowledge sources from the DEEP architecture and an example of how a
knowledge source could contribute external expertise to the blackboard. A key
characteristic of knowledge sources in a blackboard system is that they require no
knowledge of the other knowledge sources that are connected to the blackboard. They
bring their specialized expertise to the system and do not rely on others to provide it.
Each knowledge source is responsible for knowing when, what, and how it may
contribute to the solution to the current problem on the blackboard (Corkill, 1991).

Figure 4 - Distributed Blackboard Architecture

 13

In the DEEP architecture, all systems must implement an interface provided by the
blackboard in order to connect to it. The connection process includes connecting to the
local blackboard proxy and registering with the blackboard for blackboard update event
notifications (more on this in the control discussion in Section 3.3.1.3). So now there is a
data store and knowledge sources are ready to place objects on it. The next section
discusses the control mechanism of the blackboard to facilitate the problem solving
which will take place on the blackboard.

3.3.1.3 Control

There are several control system paradigms that may be employed when designing a
blackboard system. It may be very centralized to the blackboard, distributed among the
blackboard and knowledge sources, or pushed out to the knowledge sources, requiring
them to facilitate their own control of contributions to the problem (Corkill, 1991). The
blackboard system developed for the DEEP architecture splits the control between the
blackboard application and its knowledge sources. The control component on the actual
blackboard application directs communication among the distributed blackboards, where
the knowledge sources are held responsible for choosing whether or not they should
interact with new or updated objects on the blackboard, or even taking initiative and
placing a new object on the blackboard without waiting for a blackboard event
notification.

The control component of the blackboard is also what enables multiple blackboards to
remain synchronized and distributed. Because the control component manages all of the
activity occurring within the blackboard system, it is able to control how information is
distributed among the connected blackboards, as well as maintaining synchronization
through the use of queues and messaging schemes. This is what allows the blackboard
system to be viewed as a single logical blackboard, while physically there are multiple,
synchronized replicated blackboards. When a new object is passed to the blackboard
proxy by a knowledge source, it is passed through the control mechanism, which
distributes it to all connected blackboard applications. After all the connected blackboard
systems receive the new object, they are placed in their local data store waiting to be
manipulated or retrieved.

In addition to the three traditional blackboard systems, the distributed blackboard
designed for DEEP includes additional components that are necessary for a distributed
blackboard and uniform communication between the knowledge sources connected to the
distributed blackboard system.

3.3.1.4 Proxy

The proxy is an interface provided by the blackboard that allows a knowledge source to
connect and interface with it. This proxy connection is established using a network
socket. Originally, a blackboard application was designed to be running on each
computer that contains one or more knowledge sources. However, because each
knowledge source connects using a network socket, it may reside on a separate computer.

 14

This proxy allows the interface to perform actions to the blackboard such as the posting
and retrieval of objects. Other actions include the retrieval of an object by its unique
identifier and the registration of new blackboard listeners. Similarly to the core data
structure, the proxy interface could easily be extended to accommodate integration with
other applications (new or existing) as needed.

3.3.1.5 Blackboard Objects

A well-defined common interaction language is also necessary for a successful
blackboard system. To keep the distributed blackboard as flexible as possible, the
blackboard provides a simple interface to the knowledge sources for objects to be placed
on the blackboard. This interface forces objects placed on the blackboard to contain
certain properties and functions so the blackboard can work with the object. The
properties include the partition the object belongs to, a unique identifier (UID) for each
object, and a timestamp. By implementing this interface, the object also becomes
serializable, allowing it to be transmitted over a network socket.

3.3.1.6 Blackboard Utilities

One of the main blackboard utilities is the Packet. A packet in this context is utilized by
the blackboard control system to send messages to other connected blackboards, and is
what the knowledge sources receive when they get an update event from the blackboard.
Depending on the packet type, it contains certain useful information, some containing
blackboard objects.

Another blackboard utility is the Blackboard Unique Identifier (BBUID), which is a
unique identifier across a network. This UID is required for all blackboard objects,
system, and knowledge sources. There are also other convenience utilities such as a log
writer and properties file parser.

The Distributed blackboard is an integral part of the DEEP architecture in that it provides
the functionality and ability for the system to become distributed. Now that there is a
distributed data structure, we can look at the DEEP knowledge sources and how they will
utilize the blackboard.

3.3.2 DEEP Agents

The DEEP system uses two different types of agents. The first type is called an interface
or planning agent and the second type is a critic agent.

Agents in the DEEP architecture extend and use the Java Agent DEvelopment (JADE)
framework (Bellifemine, 2006). DEEP requires a distributed multi-agent system and a
framework to help simplify the implementation of this system. JADE was chosen because
it is fully implemented in Java, and supports these requirements.

 15

3.3.3 Interface Agents

Interface agents, also called planning agents, serve a dual purpose. From the user
perspective, these agents provide the interface into the DEEP system, enabling the user to
input new situations and communicate with the DEEP system. These agents also provide
the wrapper for the user’s case base (representing his or her planning experiences) and
incorporate a case-based reasoner that utilizes the case base for planning. That is, these
agents are the user front end for the planner and allow for mixed-initiative interaction
with the system.

Figure 5 - Case-based Planning

DEEP uses jCOLIBRI (2008), an object-oriented framework in Java for building case-
based reasoning (CBR) systems. Figure 5 illustrates how the CBR cycle is applied to
case-based planning used in the DEEP architecture. Case-based planning makes use of
past experiences to implement new plans and retain their outcomes. That is, “Case-based
planning is the idea of planning as remembering” (Hammond, 1990). The planning agent
allows the user of the system to input a situation using a user interface. Once the operator
feels comfortable with the input, the agent, via the user interface, allows the situation to
be forwarded to the blackboard. The situation includes statements about the problem’s

“I have a situation…”

user case

Case base

User enunciates objectives
and situation

similar case

Most similar case is retrieved
from past experiences

Case is reused and revised,
adapted to the present

new plan

The experience is
retained for future use

1

2

3
4

5

The new plan is then
implemented

 16

objective, locations, actors, resources, and times. This is the primary way the system
allows user interaction. While interacting with the user interface, the operator can also
view plans on the blackboard and view the case base associated with the planning agent.
The case base for each planning agent will be unique.

Once a situation has been placed on the blackboard, the blackboard will broadcast a
message notifying all registered systems about the new problem. The listeners in the
other planning agents determine what type of object was placed on the blackboard, and
react to a new situation by initiating cased-based reasoning for the new problem. See
Ford & Carozzoni (2007) for a complete explanation of the CBR process used in DEEP.
The CBR process selects the best set of cases from its case base and posts them onto the
blackboard as candidate plans. Once the candidate plans are placed on the blackboard,
they are processed by the critic agents (discussed in detail below in Section 3.3.4).

Each planning agent is expected to have a unique case base, since each planning agent
represents the experience of some entity or group of entities. The case base of an entity
can contain experiences of any kind. This variety is readily supported by DEEP’s plan
representation, CPR, because of its ability to work with planning knowledge at different
levels of abstraction.

The interface/planning agent is indeed a multi-faceted entity, providing an interface to the
user, an interface to a case base, and an interface to a reasoning engine. These interfaces
are important due to tight interaction of these systems. Little processing is done by the
planning agent itself, but rather by an external system that it interfaces with (e.g.,
jColibri). The agent itself is the medium between the reasoning process and the
blackboard as well as the human and the blackboard. Now that the plans are on the
blackboard and ready for evaluation, it is time to discuss the critic agents.

3.3.4 Critic Agents

The term critic agent is used to describe a number of agents in DEEP that evaluate plans
based on a number of criteria. The criteria can be loosely coupled into the following
categories: adaptation, critique, and execution. Adaptation critics are plan refiners.
Critique agents are evaluators of plans that score based on their own inherent knowledge.
Execution critics determine ongoing plans in the DEEP cycle. All of these different types
of critics are discussed in depth in the following paragraphs.

3.3.4.1 Adaptation Critic Agents

Adaptation agents in the DEEP architecture are software agents that specialize in further
refining a plan based on their particular area of expertise. As explained earlier, the initial
plan that is instantiated to the new situation and placed onto the blackboard is a “rough
cut” and needs supplementary revision. When the adaptation critic agent receives
notification from the blackboard that there is a new instantiated plan on the blackboard, it
reviews the plan, makes its changes, and posts a new version of the plan with its
adaptations.

 17

There are many possibilities for different adaptation agent specializations. For a proof-of-
concept, a Capabilities Adaptation Agent was designed, developed, and integrated into
the DEEP architecture. The Capabilities Adaptation Agent’s specialization is validating
that the actors in the instantiated plan are capable of performing the actions to which they
were assigned. In order to accomplish this, it first has to be determined what roles an
actor is capable of performing and validate that it is consistent with the action to which it
has been assigned. Actors in the DEEP architecture have both default roles as well as
specialized roles for the situation that need to be taken into account. If a given actor is not
capable of the role that has been assigned, a new actor must be found to replace it. The
agent looks in the current situation for similar available actors, where similarity is
determined by traversing an actor/role taxonomy and selecting one with a minimal
semantic distance (Ford & Carozzoni, 2007). This new, similar actor then replaces the
incapable actor in the action. After the agent has adapted this plan using its specialized
knowledge, it then posts the updated plan to the blackboard.

The use of Adaptation Agents is also an area where mixed-initiative interaction can once
again be brought into the system. Interfaces could be made to allow the plan to be
displayed to a user, either as a whole or in a specific way, which would allow the user to
apply his or her expertise and adapt part of the plan.

In the process discussed so far, a scenario has been created by specifying objectives,
methods and resources that were then placed on the blackboard. Each planning agent has
examined its case base to find similar situations and used them to instantiate a new plan
based on its past experience. Now that the plans on the blackboard have been instantiated,
and refined by multiple Adaptation Agents, they are ready to be scored and criticized by
the Critique Agents.

3.3.4.2 Critique Agents

This category of agents can be quite extensive, but the present DEEP system only uses
one for demonstration purposes. The particular critique agent implemented is a weather
agent, but the future possibilities include political, logistics, ethical, legal and cyber
agents, among others.

Scoring agents focus themselves on certain areas of a plan. A weather agent, for
instance, would focus on how weather impacts the plan and ignores other areas such as
political fallout. A legal agent would not focus on weather, but instead would focus on
the legal aspects of the plan. These agents will find and use relevant data and ignore data
that is of no concern to them. Critique agents do not change the plan as adaptation agents
do; rather, they only analyze how the plan may work in the particular subject area. To
have a subject area of expertise, these agents usually wrap or communicate with an
outside knowledge source that specializes in that area. The weather agent for example
has a weather feed it can communicate with, an understanding of weather rules and the
weather capabilities of actors in the plan.

 18

During the DEEP process, critique agents use the adapted plans on the blackboard for
evaluation. The agents will use the data they need in the plan to further their processing.
For example the weather agent will extract the location data contained in the plan and
then use that location data to gain weather information using an external source, such as
an RSS (Really Simple Syndication) feed. Once the CPR plan object has been parsed for
the needed data, the critique agent will process it. The implementation behind evaluation
will be different for each critique agent as will the data required for them out of CPR. It
is possible as new critique agents are added CPR will need to evolve to include more
information. Once evaluation has finished, these agents use a scoring algorithm to
produce a score that is tied to that particular plan, which is posted to the blackboard.

These agents follow a general technical scheme. They implement the Java Agent
Development (JADE) Framework, register to and setup listeners to the blackboard, have
a knowledge source either internally or externally, have an evaluation implementation,
and a scoring algorithm. These agents can also use human sources as their knowledge
base allowing for mixed initiative interaction.

3.3.4.3 Execution Selection Critic Agents

Once there are several plans that have been instantiated, adapted, and scored by the
various agents in the DEEP system, a final agent is responsible for selecting the top
scoring plan(s) and sending them off for execution. This agent is known as the Execution
Selection Critic Agent. Its specialization is taking all of the information on the
blackboard and using it to evaluate and rank the plans. It then either decides which
plan(s) are to be executed by either prompting the user for mixed-initiative input, or
selecting one on its own.

The first challenge in developing the Execution Selection Agent was how to know when
to notify the agent once the plans on the blackboard have converged. In other words, the
problem was how an agent, which by design is not dependent upon other agents, knows
when other agents are done accomplishing their tasks. The solution chosen was to utilize
the message passing that was discussed in Section 3.2.2. The Interface agents broadcast a
message containing information about how many instantiated plans they are posting on
the blackboard. When the Adaptation Agents realize they have work to do, they notify the
Execution Selection Agent to wait until their work is completed. Similarly, the Critique
Agents notify the Execution Selection Agent to wait as well. The Execution Selection
Agent receives all these messages and uses them to determine when the appropriate
number of adapted plans and scores are placed on the blackboard. The Execution
Selection Agent then keeps a count of all the adapted plans and scores that are being
placed on the blackboard to determine when the plans have converged.

After the agent realizes that the plans have converged, it then sorts the plans in order of
best to worst. In order to sort the plans, it uses the scores associated with each plan to rate
them. This functionality does not currently assign a weight to the scores; however, in the
future it should.

 19

The Execution Selection Critic Agent also has an interface to pass its plans to simulators
to simulate the outcome of certain plans. The idea behind these simulations is that they
would be simulation engines that could run quickly, in parallel, and could help give
insight about the plans to the selection agent. A more detailed simulation will take place
when the top rated plans have been selected. The following section will discuss the more
detailed simulation engines and how they will be used.

In our current proof-of-concept demonstration, the Execution Selection Agent sends a
message to the Interface Agent containing the top rated plans. The user is then notified
that he or she can view the top rated plans and select one to be sent off to the main
simulation engine.

3.3.5 Plan Execution

After the Execution Selection agent has decided on the plans to be executed, the DEEP
architecture notifies the execution component. While in the long-term DEEP vision
execution will be accomplished in the operational world, our current implementation uses
simulation to test and evaluate plan execution. The CPR object that has been passed
around throughout this cycle contains plan information, but it also contains sections ready
to be populated with the plan outcome and events. The plan outcome section is crucial to
future reasoning over the plans due to the need to understand what happened while
executing that plan in a given context. The simulator has to be able to produce an
outcome with the results and how the results were obtained. This is important because it
has to be able to document which objectives succeeded or failed and why. This
information will populate the events section. An example might be the events leading up
to the failure of a supply transport due to enemy interception. The events would describe
the specific happenings of that situation, including the enemy planes shooting down the
tanker.

Simulation in the DEEP cycle presently involves a randomly generated outcome tied to
specific plans. In Section 4.6 we discuss the avenues that are open in the near future for
more realistic plan execution.

Once simulated execution of a plan is complete, the user can review the plans on the
blackboard. Finally, complete plans containing events and results are assimilated into
the case base of the engaged planning agent for future reuse.

 20

4 Results and Discussion

The previous chapters of this report have documented the principled architecture
designed for the DEEP project. The explanation of the architecture has also been
supplemented by the current prototype proof-of-concept example implementation of
several of the DEEP software systems (Section4.1). The initial drive of the DEEP project
was to build a research platform that was developed in a modular fashion allowing these
future advancements to be easily retrofitted. In this chapter we discuss some of the
specific goals that have been established for DEEP as future research areas where the
DEEP system shall improve.

4.1 Research Platform Demonstration

The architecture and systems described in the previous chapter have been implemented in
a research demonstration prototype. A screenshot of the user interface from the
demonstration implementation is shown in Figure 6. This interface provides the user
access to his/her case base of experiences, a view of the contents of the system’s
blackboard, and a mechanism for view evolving plans. This research platform will serve
as the basis for all future research in the DEEP program, some of which is described later
in this chapter.

Figure 6 - DEEP Demonstration Prototype

The experience-base of the current DEEP demonstration prototype (“Casebase” in Figure
6) was based on the Battle for Guadalcanal (Aug 42 –Feb 43) and focused on joint
aspects of the conflict and not just the management of the air assets. There was strong
rationale for using Guadalcanal as the experience-base, including:

 21

• It was an intense, full spectrum combined land/air/sea campaign
• It had the first JFACC-like position (Operation Watchtower)
• It had both traditional and asymmetric aspects
• It included issues addressing cultures and technologies
• It leveraged coalitions and alliances (i.e., Australians)
• It was thoroughly documented and analyzed, a key aspect to facilitate case

validation and verification

For the demonstration scenario, a totally different type of mission was chosen: Operation
Unified Assistance; the U.S. humanitarian response to the earthquake just north of
Sumatra Island and the resulting tsunami. Currently, DEEP demonstrates the power of
analogical reasoning in using the historical, military-focused Guadalcanal experience-
base to plan for a modern humanitarian relief operation. DEEP will be used to experiment
with the capability of analogical reasoning to improved planning speed, plan quality, and
plan creativity, with the vision of becoming a truly distributed planning capability in the
future.

4.2 Semantic CPR

As discussed in Section3.2.1, the version of CPR that is used in the DEEP system
(henceforth called DEEP-CPR to avoid confusion) uses a collection of informal
taxonomies to represent plan-related information. While the terms used in these (Pease &
Carrico, 1997)taxonomies have meaning to the people who developed them, they are in
fact merely collections of symbols that have no explicit meaning to the machine. As
such, the interpretation of this information must be programmed into the agents that
interpret and manipulate plans represented in DEEP-CPR.

In this section we present an approach to extending DEEP-CPR to leverage semantic
technologies. The goal of these extensions will be to allow plans in DEEP to be
semantically self-describing. This will allow developers of DEEP system, such as plan
analysis agents, to create domain-independent approaches free of hard-coded DEEP-CPR
Semantic Extensions

As a first step, we are using RDF (Resource Description Framework) (Brickley & Guha,
2002) as the foundational layer for the semantic extensions to DEEP-CPR. RDF was
selected for its simplicity and flexibility to capture and express the semantics within the
DEEP planning system. Furthermore, we will attempt to ground the foundational DEEP-
CPR concepts with a commonly accepted upper ontology model, such as Suggested
Merged Upper Ontology (SUMO) (Pease, Niles, & Li, 2002).

 22

Figure 7 – Resource and Role Taxonomies

For example, the Purpose slot of a Plan object would currently be filled in with a symbol
from taxonomy, such as the one shown in Figure 7. Using RDF, it might be represented
as shown in Figure 8, which makes statements declaring that Objective is a subclass of,
or part of, a Plan, and Purpose is a subclass of an Objective. These statements do not
define the meaning of these terms, but rather provide relationships between the terms
within a controlled vocabulary.

<rdfs:Classrdf:about=”&cpr;Objective”
 rdfs:label=”Objective”>
 <rdfs:subClassOfrdf:resource=”&cpr;Plan”/>
</rdfs:Class>
<rdfs:Classrdf:about=”&cpr;Purpose”
 rdfs:label=”Purpose”>
 <rdfs:subClassOfrdf:resource=”&cpr;Objective”/>
</rdfs:Class>

Figure 8 - RDF Example

Given the difficulty of reading and interpreting RDF statements in XML, these triples can
instead be represented in a more simple form:

<cpr:Objective rdfs:subClassOf cpr:Plan/>
<cpr:Purpose rdfs:subClassOf cpr:Objective />

 23

4.2.1 URI Reference

To support these extensions, the text-based entries of the DEEP-CPR objects will first be
converted to Uniform Resource Identifiers (URIs). A URI is the fundamental building
block of semantic technologies. A URI is a character string that encodes a networked
resource, providing a structured and stable method for representing concepts and
resources in a distributed information space.

Unlike text-based identifiers, which are interpreted by each local system independently, a
URI-based infrastructure provides a self-describing data model that ensures agreement on
the concepts being used. This is similar to the pass-by-reference model used by modern-
programming languages, such as Java, in which information is passed as a pointer to a
value rather than a copy of the value. Therefore, when the concept is changed at the
source it is not necessary to copy those changes to all instances, since the pointer to that
information does not need to change.

HTTP is the most common protocol used to create URIs as it is well suited to resource
indexing. In DEEP-CPR, a concept such as the Purpose of a plan could be represented as
http://deep.af.mil/namespace/concepts#Purpose. The server containing the reference is
deep.af.mil, with concepts being located in a namespace virtual directory on that server.
The #Purpose is interpreted as the reference to the Purpose concept within the concepts
page.

4.2.2 RDF Metadata Model

Once the DEEP-CPR entries are converted to URIs, they will be encoded into RDF
statements. RDF is an important component of semantic technologies being supported by
the World Wide Web Consortium (W3C) and the semantic web community. It is a
general-purpose language defined by the use of triples to identify and describe networked
resources that are represented by URIs. An RDF statement is a triple (S, P, O) in which:

• S is a URI, the subject of the statement
• P is a URI, the predicate of the statement denoting a relationship
• O is either a URI or a literal (plain text) and represents the object or value of the

predicate P for subject S

RDF Schema (RDF-S) (Brickley & Guha, 2003)is a vocabulary that introduces additional
structure to RDF allowing domain-independent definition of classes, subclasses, and
properties. These structural concepts provide a means for declaring relationships between
concepts that are generally understood without specific knowledge of the domain. It is
this fundamental understanding that allows shared understanding between information
spaces without explicit mapping and transformation.

http://deep.af.mil/namespace/concepts#Purpose

 24

Figure 9 – Objective Decomposition

For example, assume the existence of the following namespaces for rdfs and cpr, that
define the RDF-S and CPR vocabularies. We can then define a case using the abbreviated
syntax for a Case called Operation Unified Assistance. As in the example shown in
Figure, search and rescue assistance will be provided to victims of a disaster in the Aceh
region. Concepts that have a numbered suffix, such as Case2398, represent the actual
internal concept name for unique identification within the system. Since it is possible—
even likely, given variations on the same plan—that two cases could have the same name,
we cannot rely on the name of the case to distinguish it from another case (Nejdl, 2003).
Instead, the name becomes a property of the concept via the hasName relationship.

[Instance object types]
<Case2398 rdfs:typecpr:Case/>
<Obj8723 rdfs:typecpr:Objective/>
<Pur4423 rdfs:typecpr:Purpose/>
<Role6415 rdfs:typecpr:Role/>
<Entity0123875 rdfs:typecpr:People/>
<Loc23498 rdfs:typecpr:Location/>

[Object properties]
(Alexander, 2004)<Case2398 cpr:hasObjective Obj8723/>
<Obj8723 cpr:hasName "Provide Search and Rescue in Aceh Region"/>
<Obj8723 cpr:hasPurpose Pur4423/>
<Pur4423 cpr:hasName "Support Victims"/>
<Pur4423 cpr:hasRole Role6415/>
<Pur4423 cpr:hasSubject Entity0123875/>
<Role6415 cpr:hasTypecpr:Support/>
<Entity0123875 cpr:hasName "Disaster victims in Aceh region"/>
<Entity0123875 cpr:hasLocation Loc23498/>
<Loc23498 cpr:hasName "Aceh">

Each of the concepts used will map to URIs that provide rich textual description defining
the meaning of the term. This more explicit definition provides some guarantee that terms
used will be based on agreed-upon meanings rather than local interpretation of a symbol.
In addition, this self-describing format provides a set of constraints on parts of the plan
that will support both comparison and reasoning for the system.

 25

Unlike URIs, RDF statements cannot be stored on web servers as HTML pages.
Therefore, it will be necessary to utilize RDF Stores within the DEEP architecture to
provide storage of triples. One likely option will be to use an Oracle database, as Oracle
will be including support for storage and query of the RDF format (Alexander, 2004)in
their next major version. Unlike URIs, RDF statements are more challenging to access in
a distributed environment (Nejdl, 2003), although methods such as peer-to-peer (Cai,
2004) indexing have been investigated.

4.2.3 Semantic Technology Benefits and Challenges

The use of semantic technologies as data structures provides significant benefit to both
computational and user-based interaction with the information being stored. These
benefits include:

• Expressive. Since each piece of information is attached to a base hierarchy of
structural and functional relationships it can be given more description than a
simple string name can provide. Issues such as individual meaning and context
can begin to be represented and attached to information to be sure that it is used
correctly by the systems that will process it. However, it should be noted the
commitment to some first-order logics such as those provided by OWL may also
limit the expressivity that can be provided (Pan, 2004). In addition, the notion of a
meaning for a given concept will often differ between users, even those within
one community of interest. Therefore, it can be a challenge to develop a common
vocabulary that represents an agreed upon, shared meaning between multiple
users and systems. Additionally, as the meaning of concepts changes over time
there need to be established formal methodologies for making changes while still
maintaining the integrity of the information being represented.

• Abstraction. The hierarchical organization of formal ontologies provides a
structure that can be directly interpreted as layers of abstraction. This provides an
ideal computational structure for determining the more general classes that
subsume a given concept within the case base. This structure could easily be used
as a measure of similarity between individual and collections of concepts. Further
discussion on the benefits and challenges can be found in (Wiederhold, 1994).

• Descriptive. Unlike a flat database schema, the relationships provided by a
semantic information space provide more description of the data field than its
name and location. Each concept (and accordingly the name used to describe it)
can be given any number of properties that provide both supplemental
information as well as the relationship it has to other concepts that may be found
in the information space. These additional descriptions, while providing new
facets of reasoning, also make the information space more difficult to examine
and update from a user perspective. Therefore, as this complexity increases
attention should be given to ensuring that highly complex descriptions are
organized in a way that can be navigated and validated by human users.

 26

• Longevity. Formal definitions of information semantics provide a structure that
can be represented beyond a specific data source. This allows for concept
definitions that extend beyond a current snapshot of the world and enforce a more
permanent interpretation. While this does not mean that the meaning of concepts
cannot change, it does limit the misunderstandings that can occur based on the use
of language alone.

• Interoperability. While true context-based interoperability is not yet realized, the
structure of semantics provides a more formal basis for promoting predictable
data transformation between information spaces. By allowing information spaces
to find matching concepts not only by name but also via structural and logical
similarities, the likelihood of accurate mapping is increased significantly.
However, mapping between these structures is rarely a one-to-one relationship
that can be represented in a simple manner. More complex relationships between
information spaces require sophisticated functional mappings that are difficult to
design, maintain and validate. For example, a 3-wheeled vehicle may be classified
as a motorcycle in one model, but have no direct mapping to a model that
classifies all vehicles into 2-wheeled and 4-wheeled vehicle categories, even
though motorcycle was previously mapped to the 2-wheeled concept.

While most of these benefits are tempered by complications they still provide a more
reliable basis for reasoning than can be provided by current flat data standards such as
RDBMS and XML. This reasoning support provides significant benefit to the DEEP
project by enabling query and inference capabilities that are focused on concepts and
relations as opposed to words.

However, there are many challenges that must be overcome before semantic technologies
can be widely deployed and maintained by an information infrastructure. This includes:

• Building ontologies. Ontologies are commonly built as a manual process in which
experts and knowledge engineers brainstorm a concept space and begin to
formalize definitions. While this proves effective in smaller domains and
information spaces it is often the case that the members of larger communities of
interest cannot come to an agreement on the definition of some concepts.
Depending on the degree of difference between these views it is sometimes
impossible to represent both viewpoints in one ontological structure. Some of the
varied methodologies for building ontologies are discussed in (Lopez, 1999).

• Indexing ontologies. There are currently no standard methods for indexing and
allowing searches over ontological concepts and relationships. While many tools
allow for a keyword-based search it is often difficult to know exactly what term is
used to describe these constructs. Given the ambiguous nature of language there
are often many words that could be used to describe one concept. While
significant work has been done regarding mapping ontologies to each other
(Maedche, 2002), little work could be found that looked at an infrastructure to
provide access to ontologies that have not yet been directly mapped to the local
ontology.

 27

• Ontology versioning. Just as the world changes constantly, so should ontologies.
While it may hold that cars cannot fly today, someday that may change and an
ontology describing cars will have to be re-engineered. However, there may be a
situation where a system that has a dependency or reliance on the original
ontology to provide the same reasoning constructs it provided before. Therefore,
it is vital that a reliable standard for publishing and access of ontology versions
exist to allow for interaction between information spaces without unexpected
change (Klein, 2001).

• Structure vs. Flexibility. Since ontologies represent an “upper class” of data, it is
important to be wary of the commitments made at the ontological level. Any
restrictions placed on a concept will be inherited by any instance that is a type of
that concept. If an ontology asserts that all cars are blue then it is not possible for
an instance of a car under that ontology to be anything but blue. On the other hand
if the ontology contains a concept Car that has no properties or relationship, it is
nothing more than a symbol that provides no logical support. Therefore, there is a
balance that must be maintained between the amount of structure you impose at
the ontology level and the amount of flexibility given to instances of the concepts
that have been described.

While working on the current implementation, we found that the landscape of possible
specifications was both complex and confusing. For example, it was not initially clear
what the differences were between RDF-S terms subClassOf and type. In addition, RDF-
S and OWL share some terms, making it difficult to distinguish between them. Also, we
found that the currently available tools are premature and require extensive experience.
In fact, RDF generated in one tool will often not open correctly in another tool due to
subtle differences between them, even though they are both using the same
representation. Further, we believe that RDF encoded in XML format is a misleading
representation for human readability even though it is ideal for machine-independent
processing. The hierarchical representation reflected by XML encoding is not directly
applicable to the structure of the RDF triplets.

However, we believe that the benefits gained should outweigh the shortcomings. Our
recommendation to the C2 Community is to invest time and effort into understanding and
applying semantic technologies in the form of abstract domain ontologies. More
specifically, we suggest using the RDF and RDF-S frameworks as the foundational layer
to encode and externalize the semantic concepts within their respective domain. Doing
so will enable complex reasoning and portability in the long-term while providing the
benefits of lightweight hierarchical reasoning and modularity in the short-term.

4.3 Multi-Case Reconciliation

In DEEP, agents exchange and utilize experiences to solve problems. An interesting
challenge that we are exploring is finding a way to use the experiences from several
agents to solve a problem. In this section, we discuss the notion of robust coherence.
Robust coherence involves establishing the truth of experiences in both the collective

 28

context of the problem and the objective world the problem is concerned with. An agent
will present a problem, which will be addressed by different agents by allowing each
agent to suggest experiences for adaptation. Those experiences will be selected based on
their coherence in the collective view of the problem. Also, that set of experiences will
be challenged by critical rationalism to maintain correspondence with the dynamic
world. We will begin with an explanation of coherence and conclude this section with a
discussion of critical rationalism and how to apply it. Then we will discuss DEEP’s
Ensemble Case Knowledge (DECK), an algorithm for establishing robust coherence
within DEEP. Ford and Lawton (2008) discuss a more detailed outline of this algorithm
and its current implementation.

4.3.1 Coherence
Thagard and Verbeurgt (1998) discuss coherence in philosophical, psychological, and
computer science terms. Philosophically, coherent knowledge is knowledge that is
mutually supportive in an overall context of justification. In simple terms, establishing
coherence involves establishing constraints, and satisfying those constraints by sorting
elements into either accepted or rejected sets. Solving this constraint satisfaction
problem allows a reasoner to determine what information is mutually supportive in an
overall system of beliefs. This becomes more complex in the establishment of these
constraints, and the many algorithms that are available to solve the resulting constraint
satisfaction problem.

This approach requires the establishment of positive constraints and negative constraints.
Certain relations can be characterized as coherent (such as explains, associates, or
facilitates), while others denote incoherence (such as incompatible, contradictory, or
inconsistent). Elements that are related by a coherent relation are positively constrained,
while elements related by an incoherent relation are negatively constrained.
Fulfilling the constraints established by these relations consists of sorting elements into
the appropriate set, accepted or rejected, based on their constraints. Positively
constrained elements are either both accepted or both rejected. The two elements that are
positively constrained must be sorted into the same set. Negative constraints are satisfied
by accepting one or the other element involved. The two elements that are negatively
constrained cannot be sorted into the same set. Logically, this is equivalent to treating
positive constraints as an AND operation, and negative constraints as an XOR operation.
However, this system attempts to maximize constraint satisfaction, which means that not
all constraints need to be met, just as many as possible.

Constraints will be satisfied or violated based on a strength value. This strength value
indicates how much a constraint contributes to the overall coherence of the system. A
constraint satisfaction problem solver determines the most coherent sorting based on
these strength values. Constraints may be upheld or violated based on the combination
that leads to the greatest coherence. This allows the elements in the system to be
accepted or rejected based on the overall coherence of the system.

 29

We can use this notion of coherence to choose a set of experiences that will be acceptable
to use in planning or prediction, because they are coherent with the world view
established by the group of cooperating agents. In this way, suggested experiences exist
in an overall context established by the whole group of agents. Expertise is exchanged
collectively, leading to shared understanding of a problem.

While this form of coherence may appear to be useful to establish truth, there is the
danger of forming a coherent truth that is circular in nature. That is, forming a set of
experiences that mutually support one another as coherent, but do not actually correspond
to the outside world and how it really works. Moreover, there could be multiple coherent
systems of experiences which lead to alternate world views. Some or none of these
equally plausible interpretations could correspond with reality. For this reason, we must
be able to establish coherent collections of experience that also correspond with the
current reality of a situation.

4.3.2 Critical Rationalism
“It is an old maxim of mine that when you have excluded the impossible, whatever
remains, however improbable, must be the truth” (Doyle, 1892)

To address these problems, we turn to another form of reasoning to help inform
coherence as an epistemology: a more deductive view of truth that seeks to refute theories
based on inconsistency with evidence. Reid and Griffin (2003) discuss this method of
reasoning as critical rationalism.

Under critical rationalism, theories are postulated and stood to the test of falsification. In
other words, theories are considered which are potentially falsifiable, and then compared
to a set of observations. If the theory holds up to this set, compared to competing
theories, it is considered the least untrue (rather than most true). The measure of this
aspect of truth is known as verisimilitude (Reid & Giffin, 2003). Logically, critical
rationalism is based on deduction, rather than induction. This means that verisimilitude
measures the degree to which a theory is able to stand up to criticism based on what it
deduces should be true.

Reid puts this understanding of knowledge forth as a way to allow military planners to
communicate evidence. Under this approach, the utility of information is based on its
value in refuting theories, and the importance of doing so. Because an exhaustive search
of the complicated world for a complete set of counterexamples is impossible, theories
are ranked based on their level of repudiation, not on their level of truth. Communication
establishes a reasonable level of verisimilitude for theories, understanding that a complete
measure is unattainable.

 30

We can use verisimilitude to better inform a coherent set of experiences by attempting to
locate information that refutes some of the aspects of the experiences. By doing this, we
establish the degree of false-ness in those experiences for facing a current problem, and
avoid the pitfall of blindly applying experience. This is what makes robust coherence
different from ordinary coherence. Rather than relying on coherence as the only
mechanism of justification for beliefs, robust coherence uses critical rationality to
establish the “anti-justification” of beliefs.

DECK uses coherence informed by critical rationality to create set of coherent, robust
experiences that address a specific problem. The counterexamples for experiences allow
us to examine how those experiences’ utility is inhibited by facets of the ever-changing
world. In this way, critical rationalism can also indicate critical conditions in the world,
allowing for the discovery of new goals. In the following section, we will examine the
mechanisms DECK employs to accomplish a system of robust coherence.

4.3.3 Planning in DECK

Deliberative coherence is an approach that can be used to determine the appropriate
actions and goals in a situation (Thagard & Milligram, 1995). In DECK, plans are
formed from previous experience by using actions and goals from recalled experiences as
the initial factors in a system of deliberative coherence. This system is populated with
facilitation and incompatibility relations that allow the system of coherence to be solved.
This means that deliberative coherence does not have to be utilized from scratch, but
rather can be accomplished by an ensemble of competent case-based agents.

As different agents suggest experiences from their own case bases, DECK interprets the
actions and goals from these experiences in a system of deliberative coherence. This
reasoning establishes the positive and negative constraints between these portions of
experience, allowing a collective set of actions and goals to emerge as coherent. This
collective set can then be adapted and de-conflicted as a cohesive plan.

Throughout this entire process, these experiences are treated like hypotheses by a system
of critical rationalism. That is to say, as counterexamples that contradict elements of the
experiences enter the system, they weaken the strength of the relations posited by the
system of deliberative coherence. Because the strength of the relationships indicates the
strength of the constraints in the constraint satisfaction problem, relations with more
counterexamples are less likely to be upheld in the constraint satisfaction problem. In
this way the solution to the constraint satisfaction problem achieves a system of robust
coherence that follows the view of truth established by collective experience and also
adheres to the evolving reality of the situation.

 31

4.4 Distributed Database Management System

As discussed in Section 3.3.1, DEEP utilizes a distributed blackboard as the central data
structure for knowledge sharing and communication among its various systems. The
current implementation (Figure 4) achieves its distributed capabilities by automatically
replicating information stored in the primary blackboard module to the remotely
connected machines. This is not a robust solution, however, as information may be lost if
one of the blackboard modules dies.

To address this shortcoming, we will be replacing the data store component of the
blackboard with an Oracle (version 10g/11g) database so that we may leverage its
distributed functionality (Figure 10). By utilizing this commercial database system, we
can offload many of the issues inherent with a distributed system such as transaction
support. We are currently working on integrating a new persistence component that will
replace the in-memory data store with a Java interface connecting to an Oracle database.
With a connection to an Oracle database management system, not only will we be able to
utilize it as a high performance blackboard data store, it will also provide DEEP with a
popular integration medium for future integration efforts.

Figure 10 - Distributed Blackboard Architecture
using DDBMS

 32

4.5 Formalized Messaging Structure

The messaging system currently employed by DEEP is a simple scheme containing a
small number of unique message types, drawn from a taxonomy. One of the reasons to
improve the messaging system is to separate the messaging structure from current system
so it may be updated and improved as its own component, having minimal impact on the
system. The future vision is to leverage research done in speech act theory (Cohen &
Perrault, 1979) and to formalize a message structure for communication between the
various systems of the DEEP system. The JADE Agent Communication Language
(ACL) (Bellifemine, 2006)does have some basis in speech act theory, but we need to go
beyond relying on the structure of JADE and have a structure that anything in DEEP can
adhere to. Instead, we expect to develop a semantically driven language for the system to
communicate. The key is that the communicating entities will be involved in a
communication where negotiations can happen. By designing a separate and formalized
messaging structure in the DEEP project, it will lead to a more robust architecture to be
used as a research platform.

4.6 Plan Execution Simulation Options

In Section 3.3.5, DEEP’s plan execution simulation was walked through. DEEP is an
agent-based system for experienced-based planning and is not developing simulation
technology. Instead, DEEP will leverage either COTS simulation packages (i.e. John
Tiller's Modern Air Power) or GOTS simulation packages (i.e. Joint Synthetic Forces) to
wargame DEEP-developed plans. We intend on only writing just enough "glue code"
between DEEP and other simulation systems to hand off developed plans for simulation
and in turn to receive the results. The current rudimentary simulation environment
currently used in DEEP is a placeholder for future simulation capabilities. For proof-of-
concept, the current simulation produces a randomly generated outcome for the plan
being simulated. We are considering several simulation alternatives to replace this
simple approach.

The first option under consideration is a war-gaming simulator called Modern Air Power
(MAP) (Tiller, 2005). Working with Dr. Tiller, our in-house team has developed a
programmatic interface to create and control the actions of the various objects in MAP,
and to receive feedback on the effects of those actions. The feedback portion of this
interface is particularly important, as it is used to make dynamic changes to an executing
plan, and to provide outcome information that is included with the plan when it is
assimilated back into the case base of experiences. The MAP game engine was designed
to support tactical simulation, although it has the ability to model the effects-based
operations of a given plan. Because of this design focus, a key challenge of the ongoing
MAP interface work has been deriving cases with sufficient information to drive the
detailed MAP scenarios.

A second option for the plan execution simulation is an asymmetric agent-based
adversarial reasoning simulator called DEEPa, which is being developed by Czech
Technical University (CTU) under AFRL/RISB contract (FA8655-07-1-3083). The
primary goal of the DEEPa project is the capability to derive opponent behavior patterns.

 33

That is, unlike the MAP simulation, the DEEPa project is using a real-time simulation
environment that provides sufficient feedback to interpret adversarial actions. Using this
information, an adversarial modeling component of DEEPa (Pechoucek, Tozicka, &
Rehak, 2006) is able to infer the adversary’s intent and dynamically adapt running plans
accordingly.

 34

5 Conclusions

In this report we have presented an overview and the progress to date of the Distributed
Episodic Exploratory Planning (DEEP) project. The DEEP project was initiated in
response to the need to support the key tenets of Network Centric Operations (NCO),
namely information sharing, shared situational awareness, and knowledge of
commander’s intent. To that end, the project’s long-term goal is to develop, in-house, a
prototype system for distributed, mixed-initiative planning that improves decision-
making by applying analogical reasoning over an experience base.

The core of this report documents the successful completion of the project’s short-term
objective: the development of a “research platform” to further support more aggressive
research in the areas of distributed C2 and analogical reasoning, and how to apply the
technology to push C2 toward being more Network-Centric. This research platform
implements DEEP’s high-level system-of-systems architecture comprised of a distributed
blackboard, case-based reasoning agents that utilize episodic memories, a system of
distributed mixed-initiative planning agents, constructive plan execution simulation, and
the ARPI Core Plan Representation (CPR).

Our research platform implementation will serve the DEEP project both as a concept
demonstration of how experience-based, distributed mixed-initiative planning can be
accomplished in a network-centric environment, as well as an environment for
conducting research on the individual system needed to support this NCO vision. We
are currently pursuing research in the areas of: semantic extensions to CPR, our plan
representation; the use of robust coherence to utilize the experiences from several agents
to solve a problem; the leveraging of distributed database technology to provide
persistent storage for plans and planning information; a speech-act-based messaging
formalism for consistent communications among the distributed system; and the use of
advanced simulation platforms to improve the fidelity of plan execution and analysis.

The future for DEEP is an exciting one. Although the DEEP project is not focused on
building specific tools to hand off to any particular AF-focused customers, we do have a
transition path in mind. DEEP will develop and demonstrate technology along with an
extensible architecture that supports the long-term vision of distributed planning
augmented with analogical reasoning. The transition plans are based on three activities,
two of which are discrete events, one is a continuous: the SAB 2009 Information
Directorate review, JEFX 2010, and a JFCOM/DARPA collaboration and hand-off.

While not direct transition vehicles, a well-received SAB demonstration and an
impressive participation in JEFX 2010 may open doors to a direct transition vehicle. In
the current environment, DARPA, which is project-focused, represents a likely transition
vehicle. DARPA recently has focused on joining with JFCOM J9 (Joint Concept
Development & Experimentation Directorate) and leveraging the Joint Futures
Laboratory (JFL). While SAB 2009 and JEFX 2010 are discrete events two years into the
future, the JFCOM/DARPA activity can occur as soon as DEEP can demonstrate a

 35

distributed planning demonstration using analogical reasoning. Through this
demonstration, DEEP would expect to obtain advocacy from the operational community
to enable funding for the future R&D of the complete DEEP system. Alternatively (or
even in parallel), once we have a demonstrable prototype DEEP system, we can approach
DARPA to develop a program to further develop and advance the state of the art in the
key research areas of the DEEP architecture. This avenue would allow us to increase the
Technology Readiness Level of the DEEP prototype to facilitate its transition to an
operational environment.

 36

6 Bibliography
Alberts, D., & Hayes, E. (2007). Planning: Complex Endeavors. Command and Control
Research Program.
Alexander, N. L. (2004). RDF Data Model in Oracle. (Oracle Corporation) Retrieved
from http://download-
uk.oracle.com/otndocs/tech/semantic_web/pdf/w3d_rdf_data_model.pdf
Bellifemine, F. (2006). JADE ADMINISTRATOR’S GUIDE.
Bellifemine, F. (2006). JADE PROGRAMMER’S GUIDE.
Braun, G. (2006). AFFOR Command and Control Enabling Concept - Change 2.
Internal, USAF/A5XS.
Brickley, D., & Guha, R. (2003, January). RDF Vocabulary Description Language 1.0:
RDF Schema. (W3C, Producer) Retrieved from http://www.w3.org/TR/2003/WD-rdf-
schema-20030123/
Brickley, D., & Guha, R. (2002). Resource Description Framework (RDF) Model and
Syntax Specification. Retrieved from http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/
Cai, M. a. (2004). RDFPeers: A Scalable Distributed RDF Repository based on a
Structured Peer-to-Peer Network. Proceedings of 13th International World Wide Web
Conference (WWW2004). New York.
Caire, G. (2003). JADE TUTORIAL JADE PROGRAMMING FOR BEGINNERS.
Cohen, P. R., & Perrault, C. R. (1979). Elements of a Plan-Based Theory of Speech Acts.
Cognitive Science , 3, 177–212.
Corkill, D. (1990). Blackboard architectures and control applications. Proceedings 5th
IEEE International Symposium on Intelligent Control . Piscataway, NJ: IEEE.
Corkill, D. (1991, September). Blackboard Systems. AI Expert , 6 (9), pp. 36-38.
Corkill, D. (2003). Collaborating software: Blackboard and Multi-Agent Systems & the
Future. Proceedings of the International Lisp Conference. New York.
Doyle, A. C. (1892, Jan-June). The Adventure of the Beryl Coronet. The Strand
Magazine: An Illustrated Monthly , 3, pp. 511-525.
Ford, A., & Carozzoni, J. (2007). Creating and Capturing Expertise in Mixed-Initiative
Planning. Proceedings of the 12th International Command and Control Research and
Technology Symposium.
Ford, A., & Lawton, J. (2008). Synthesizing Disparate Experiences in Episodic Planning.
Proceedings of the 13th International Command and Control Research and Technology
Symposium.
Hammond, K. (1990). Case-Based Planning: A Framework for Planning from
Experience. Cognitive Science , 14, 385-443.
Helsinger, A., Thome, M., & Wright, T. (2004). Cougaar: A Scalable, Distributed Multi-
Agent Architecture. Proceeding of the IEEE Sytems, Man and Cybernetics Conference
(SMC04). The Hague: IEEE.
Hughes, C., & Hughes, T. (2003). Parallel and Distributed Programming Using C++.
Boston: Pearson Education.
jCOLIBRI CBR Framework. (2008, 1 22). Retrieved July 10, 2008 , from GAIA - Group
for AI Applications: http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri1/architecture.html
Klein, M. a. (2001). Ontology Versioning for Semantic Web. Proceedings of 13th Intl’
Semantic Web Working Workshop (SWWS’01). Stanford.

http://download-uk.oracle.com/otndocs/tech/semantic_web/pdf/w3d_rdf_data_model.pdf
http://download-uk.oracle.com/otndocs/tech/semantic_web/pdf/w3d_rdf_data_model.pdf
http://download-uk.oracle.com/otndocs/tech/semantic_web/pdf/w3d_rdf_data_model.pdf
http://www.w3.org/TR/2003/WD-rdf-schema-36
http://www.w3.org/TR/2003/WD-rdf-schema-36
http://www.w3.org/TR/2003/WD-rdf-schema-36
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri1/architecture.html

 37

Lopez, F. (1999). Overview of Methodologies for building ontologies. Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI-99) workshop KRR5.
Sweden.
Maedche, A. M. (2002). MAFRA – A MApping FRamework for Distributed Ontologies.
Proceedings of 13th European Conference on Knowledge Engineering and Knowledge
Management EKAW-2002. Madrid, Spain. .
Nejdl, W. S. (2003). Design Issues and Challenges for RDF and schema-based peer-to-
peer systems. ACM SIGMOD Record , 32 (3), 41-46.
Pan, J. a. (2004). Owl-e: Extending owl with expressive datatype expressions. Technical
Report, Victoria University of Manchester.
Pease, A. (1998). Core Plan Representation.
Pease, A., & Carrico, T. (1997). The JTF ATD Core Plan Representation: A Progress
Report. Proceedings of the AAAI Spring Symposium on Ontological Engineering. .
AAAI.
Pease, R. A., Niles, I., & Li, J. (2002). The suggested upper merged ontology: A large
ontology for the semantic web and its applications. AAAI-2002 Workshop on Ontologies
and the Semantic Web, Working Notes.
Pechoucek, M., Tozicka, J., & Rehak, M. (2006). Towards Formal Model of Adversarial
Action in Multi-Agent Systems. Proceedings of the fifth international joint conference on
Autonomous Agents and Multiagent Systems (AAMAS). New York, NY, USA: ACM
Press.
Reid, D. J., & Giffin, R. E. (2003). A Woven Web of Guesses, Canto Three: Network
Centric Warfare and the Virtuous Revolution. Proceedings of the 8th International
Command and Control Research and Technology Symposium.
Thagard, P., & Milligram, E. (1995). Inference to the best plan: A coherence theory of
decision. In A. Ram, & D. Leake (Ed.), Goal-driven Learning, (pp. 439-454).
Thagard, P., & Verbeurgt, K. (1998). Coherence as Constraint Satisfaction. Cognitive
Science, 22 (1), pp. 1-24.
Tiller, J. (2005). Modern Air Power. Retrieved July 2008, from John Tiller Games:
http://home.hiwaay.net/~tiller/modernairpower.htm
Wiederhold, G. (1994). Interoperation, Mediation and Ontologies. Proceedings of
International Symposium on Fifth Generation Computer Systems (FGCS94. Tokyo,
Japan.

http://home.hiwaay.net/~tiller/modernairpower.htm

 38

7 Symbols, Abbreviations and Acronyms

ACL Agent Communication Language
AFRL Air Force Research Laboratory
AOC Air Operations Center
BBUID Blackboard Unique Identifier
C2 Command and Control
CBR Case-Based Reasoning
CPR Core Plan Representation
CTU Czech Technical University
DARPA Defense Advanced Research Projects Agency
DECK DEEP’s Ensemble Case Knowledge
DEEP Distributed Episodic Exploratory Planning
JADE Java Agent DEvelopment Framework
JEFX Joint Expeditionary Force Exercise
JFCOM Joint Forces Command
JFL Joint Futures Laboratory
MAP Modern Air Power
NCO Network Centric Operation
PMESII Political, Military, Economics, Social,
 Infrastructure, and Information
R&D Research and Development
RDF Resource Description Framework
RDF-S RDF Schema
RSS Really Simple Syndication
SAB Scientific Advisory Board
SUMO Suggested Merged Upper Ontology
TRL Technology Readiness Level
UID Unique Identifier
URI Universal Resource Indicator
USAF United States Air Force

